Now available at many independent pharmacies! Ask your pharmacist about RxWell Prescription Support!

RxWell Prescription Support Science

Nutrient Depletion from Certain Medications

Below are nutrient depletions caused by specific drug classes.

Drug Target Classes Nutrients
RxWell Statin Prescription Support
Statins Coenzyme Q10, Vitamin D, Vitamin E, Vitamin K2
Diabetes RxWell Diabetes Prescription Support Biguanides (Metformin), Thiazolidinediones (TZD), Gliptins (DPP-4 Inhibitors), Sulfonylureas, Insulin Vitamin B12, Calcium, Vitamin D, Folic Acid, Vitamin B6, Magnesium, Thiamin (B1)
Stomach Acid RxWell Acid Reflux Prescription Support PPIs, H2 blockers, antacids Vitamin B12, Vitamin C, Iron, Calcium, Magnesium, Zinc, β-Carotene
Hypertension RxWell Hypertension Prescription Support (coming soon) Diuretics (loop, thiazide, & potassium-sparing*), ACE inhibitors, calcium channel blockers, beta blockers. *NOTE: Potassium must be managed separately. Calcium, Magnesium, Thiamin, Zinc, Potassium, Folate, Zinc, Potassium, Iron, Folate, Potassium, Melatonin

Impacts of Common Nutrient Depletions

Blood work results to detect nutrient deficiency can be misleading because some nutrients, such as magnesium, may have a deficiency in the body but be at a normal level in the blood. Without other methods, such as a physical nutrition assessment, nutrient deficiencies and their diseases may go undiagnosed.

Nutrient Function Deficiency Impact
Vitamin A Involved in immune function, vision, cell growth and cell communication. Increased morbidity from infectious diseases, night blindness and xerophthalmia.
Vitamin B6 Involved in greater than 100 enzyme reactions in the body and involved in protein metabolism. Microcytic anemia, scaling of the lips and cracks in the corners of the mouth, swollen tongue, depression, and confusion.
Vitamin B12 Involved in red blood cell formation, neurological function, and DNA synthesis. Megaloblastic anemia, fatigue, weakness, constipation, loss of appetite, and weight loss.
Vitamin C Involved in the formation of collagen, certain neurotransmitters, and protein synthesis. Scurvy, including: fatigue, inflammation of the gums, and weakened connective tissue.
Vitamin D Promotes calcium absorption and proper bone formation, involved in cell growth, immune function, and reduces inflammation. Development of rickets in children or osteomalacia in adults, disturbed calcium homeostasis and bone metabolism, chronic disease risk, and fatigue.
Vitamin K Involved in blood clotting, bone metabolism, and other diverse physiological functions Excessive bleeding, osteoporosis and coronary heart disease.
Coenzyme Q10 Involved in metabolism, immune system, and antioxidative protection of proteins, lipids, and DNA. Mitochondrial deficiency syndrome, low energy, cardiovascular disease, inflammation, muscle aches, and liver injury.
Calcium Involved in muscle function, nerve transmission, and proper bone formation. Development of osteoporosis.
Folate Involved in the synthesis of RNA and DNA and is required for cell division and the prevention of Neural Tube Defects. Megaloblastic anemia, neural tube defects, chronic disease risk.
Iodine A component of thyroid hormones that regulate protein synthesis, metabolism, and enzyme activity. Stunted growth and neurodevelopmental deficits.
Iron A component of hemoglobin and therefore important in the transfer of oxygen from the lungs to organs, and involved in the synthesis of hormones as well as normal growth and development. Microcytic, hypochromic anemia; impaired cognitive function, poor body temperature regulation, depressed immune function, and spoon like shape of nails.
Magnesium Involved in more than 300 enzyme reactions, protein synthesis, muscle function, nerve function, blood sugar control, and blood pressure control. Loss of appetite, fatigue, weakness, nausea, vomiting, numbness, tingling, muscle cramps, seizures, personality changes, and abnormal heart rhythms.
Zinc Involved in cell metabolism, enzyme activity, immune function, protein synthesis, wound healing, DNA synthesis, and cell division. Stunted growth, depressed immune function, hair loss, eye and skin lesions, delayed wound healing, and taste alterations.

General References on Drug Nutrient Depletion

  • The Nutritional Cost Of Drugs: A Guide To Maintaining Good Nutrition While Using Prescription And Over-The-Counter Drugs (Morton Publishing Co.,
    2004) – written by Dr. Pelton and James B. LaValle, R.Ph., ND, CCN.
  • Supplement Your Prescription: What Your Doctor Doesn't Know About Nutrition (Basic Health Publications, Inc., 2008) – written by Hyla Cass, M.D.
  • The Side Effects Bible: The Dietary Solution To The Unwanted Side Effects Of Common Medications (Broadway, 2005) - by Frederic Vagnini M.D. and Barry Fox Ph.D.
  • Drug Muggers: Which Medications Are Robbing Your Body of Essential Nutrients--and Natural Ways to Restore Them (Rodale Books, 2011) - by Suzy Cohen, RPh
  • U.S. National Library of Medicine, Medline Plus Directory of Drugs, Herbs & Supplements:

Published Studies & Articles

Impacts of Nutrient Depletions

  • National Institutes of Health. Magnesium Fact Sheet for Health Professionals. NIH Office of Dietary Supplements. Published August 11, 2021. Accessed September 1, 2021.
  • U.S. National Institutes of Health. Dietary Supplement Fact Sheets for Health Professionals. NIH Office of Dietary Supplements. Published 2021. Accessed September 1, 2021.

Cholesterol (Statins)

  • Watts G.F., Castelluccio C., Rice-Evans C., Taub N.A., Baum H., Quinn P.J. Plasma coenzyme Q (ubiquinone) concentrations in patients treated with simvastatin. J. Clin. Pathol. 1993;46:1055–1057. doi: 10.1136/jcp.46.11.1055.
  • Passi S., Stancato A., Aleo E., Dmitrieva A., Littarru G.P. Statins lower plasma and lymphocyte ubiquinol/ubiquinone without affecting other antioxidants and PUFA. BioFactors. 2003;18:113–124. doi: 10.1002/biof.5520180213.
  • Mortensen S.A., Leth A., Agner E., Rohde M. Dose-related decrease of serum coenzyme Q10 during treatment with HMG-CoA reductase inhibitors. Mol. Asp. Med. 1997;18:137–144. doi: 10.1016/S0098-2997(97)00014-9.
  • Laaksonen R., Jokelainen K., Sahi T., Tikkanen M.J., Himberg J.J. Decreases in serum ubiquinone concentrations do not result in reduced levels in muscle tissue during short-term simvastatin treatment in humans. Clin. Pharmacol. Ther. 1995;57:62–66. doi: 10.1016/0009-9236(95)90266-X.
  • Päivä H., Thelen K.M., Van Coster R., Smet J., De Paepe B., Mattila K.M., Laakso J., Lehtimäki T., von Bergmann K., Lütjohann D., et al. High-dose statins and skeletal muscle metabolism in humans: A randomized, controlled trial. Clin. Pharmacol. Ther. 2005;78:60–68. doi: 10.1016/j.clpt.2005.03.006.
  • Asping M., Stride N., Søgaard D., Dohlmann T.L., Helge J.W., Dela F., Larsen S. The effects of 2 weeks of statin treatment on mitochondrial respiratory capacity in middle-aged males: The LIFESTAT study. Eur. J. Clin. Pharmacol. 2017 doi: 10.1007/s00228-017-2224-4.
  • Skarlovnik A., Janić M., Lunder M., Turk M., Šabovič M. Coenzyme Q10 Supplementation Decreases Statin-Related Mild-to-Moderate Muscle Symptoms: A Randomized Clinical Study. Med. Sci. Monit. 2014;20:2183–2188. doi: 10.12659/MSM.890777.
  • Caso G., Kelly P., McNurlan M.A., Lawson W.E. Effect of coenzyme Q10 on myopathic symptoms in patients treated with statins. Am. J. Cardiol. 2007;99:1409–1412. doi: 10.1016/j.amjcard.2006.12.063.
  • Fedacko J., Pella D., Fedackova P., Hänninen O., Tuomainen P., Jarcuska P., Lopuchovsky T., Jedlickova L., Merkovska L., Littarru G.P. Coenzyme Q(10) and selenium in statin-associated myopathy treatment. Can. J. Physiol. Pharmacol. 2013;91:165–170. doi: 10.1139/cjpp-2012-0118.
  • Young J.M., Florkowski C.M., Molyneux S.L., McEwan R.G., Frampton C.M., George P.M., Scott R.S. Effect of coenzyme Q(10) supplementation on simvastatin-induced myalgia. Am. J. Cardiol. 2007;100:1400–1403. doi: 10.1016/j.amjcard.2007.06.030.
  • Bookstaver D.A., Burkhalter N.A., Hatzigeorgiou C. Effect of coenzyme Q10 supplementation on statin-induced myalgias. Am. J. Cardiol. 2012;110:526–529. doi: 10.1016/j.amjcard.2012.04.026.
  • Yavuz B., Ertugrul D.T., Cil H., Ata N., Akin K.O., Yalcin A.A., Kucukazman M., Dal K., Hokkaomeroglu M.S., Yavuz B.B., et al. Increased levels of 25 hydroxyvitamin D and 1,25-dihydroxyvitamin D after rosuvastatin treatment: A novel pleiotropic effect of statins? Cardiovasc. Drugs Ther. 2009;23:295–299. doi: 10.1007/s10557-009-6181-8.
  • Ertugrul D.T., Yavuz B., Cil H., Ata N., Akin K.O., Kucukazman M., Yalcin A.A., Dal K., Yavuz B.B., Tutal E. STATIN-D study: Comparison of the influences of rosuvastatin and fluvastatin treatment on the levels of 25 hydroxyvitamin D. Cardiovasc. Ther. 2011;29:146–152. doi: 10.1111/j.1755-5922.2010.00141.x.
  • Anagnostis P., Adamidou F., Slavakis A., Polyzos S.A., Selalmatzidou D., Panagiotou A., Athyros V.G., Karagiannis A., Kita M. Comparative Effect of Atorvastatin and Rosuvastatin on 25-hydroxy-Vitamin D Levels in Non-diabetic Patients with Dyslipidaemia: A Prospective Randomized Open-label Pilot Study. Open Cardiovasc. Med. J. 2014;8:55–60. doi: 10.2174/1874192401408010055.
  • Rejnmark L., Vestergaard P., Mosekilde L. Reduced fracture risk in users of thiazide diuretics. Calcif. Tissue Int. 2005;76:167–175. doi: 10.1007/s00223-004-0084-2.
  • Ismail F., Corder C.N., Epstein S., Barbi G., Thomas S. Effects of pravastatin and cholestyramine on circulating levels of parathyroid hormone and vitamin D metabolites. Clin. Ther. 1990;12:427–430.
  • Montagnani M., Loré F., Di Cairano G., Gonnelli S., Ciuoli C., Montagnani A., Gennari C. Effects of pravastatin treatment on vitamin D metabolites. Clin. Ther. 1994;16:824–829.
  • Ott C., Raff U., Schneider M.P., Titze S.I., Schmieder R.E. 25-hydroxyvitamin D insufficiency is associated with impaired renal endothelial function and both are improved with rosuvastatin treatment. Clin. Res. Cardiol. 2013;102:299–304. doi: 10.1007/s00392-012-0534-1.
  • Sathyapalan T., Shepherd J., Arnett C., Coady A.-M., Kilpatrick E.S., Atkin S.L. Atorvastatin increases 25-hydroxy vitamin D concentrations in patients with polycystic ovary syndrome. Clin. Chem. 2010;56:1696–1700. doi: 10.1373/clinchem.2010.144014.
  • Pérez-Castrillón J.L., Abad L., Vega G., Sanz-Cantalapiedra A., García-Porrero M., Pinacho F., Dueñas A. Effect of atorvastatin on bone mineral density in patients with acute coronary syndrome. Eur. Rev. Med. Pharmacol. Sci. 2008;12:83–88.
  • Pérez-Castrillón J.L., Vega G., Abad L., Sanz A., Chaves J., Hernandez G., Dueñas A. Effects of Atorvastatin on vitamin D levels in patients with acute ischemic heart disease. Am. J. Cardiol. 2007;99:903–905. doi: 10.1016/j.amjcard.2006.11.036.
  • Ahmed W., Khan N., Glueck C.J., Pandey S., Wang P., Goldenberg N., Uppal M., Khanal S. Low serum 25 (OH) vitamin D levels (<32 ng/mL) are associated with reversible myositis-myalgia in statin-treated patients. Transl. Res. J. Lab. Clin. Med. 2009;153:11–16. doi: 10.1016/j.trsl.2008.11.002.
  • Glueck C.J., Budhani S.B., Masineni S.S., Abuchaibe C., Khan N., Wang P., Goldenberg N. Vitamin D deficiency, myositis-myalgia, and reversible statin intolerance. Curr. Med. Res. Opin. 2011;27:1683–1690. doi: 10.1185/03007995.2011.598144.
  • Linde R., Peng L., Desai M., Feldman D. The role of vitamin D and SLCO1B1*5 gene polymorphism in statin-associated myalgias. Dermatoendocrinol. 2010;2:77–84. doi: 10.4161/derm.2.2.13509.
  • Kurnik D., Hochman I., Vesterman-Landes J., Kenig T., Katzir I., Lomnicky Y., Halkin H., Loebstein R. Muscle pain and serum creatine kinase are not associated with low serum 25(OH) vitamin D levels in patients receiving statins. Clin. Endocrinol. 2012;77:36–41. doi: 10.1111/j.1365-2265.2011.04321.x.
  • Okuyama H, Langsjoen PH, Hamazaki T, et al. Statins stimulate atherosclerosis and heart failure: pharmacological mechanisms [published correction appears in Expert Rev Clin Pharmacol. 2015;8(4):503-5]. Expert Rev Clin Pharmacol. 2015;8(2):189-199. doi:10.1586/17512433.2015.1011125


  • Beulens J.W.J., Hart H.E., Kuijs R., Kooijman-Buiting A.M.J., Rutten G.E.H.M. Influence of duration and dose of metformin on cobalamin deficiency in type 2 diabetes patients using metformin. Acta Diabetol. 2015;52:47–53. doi: 10.1007/s00592-014-0597-8.
  • Iftikhar R., Kamran S.M., Qadir A., Iqbal Z., Usman H. bin Prevalence of Vitamin B12 deficiency in patients of type 2 diabetes mellitus on metformin: A case control study from Pakistan. Pan Afr. Med. J. 2013;16 doi: 10.11604/pamj.2013.16.67.2800.
  • Nervo M., Lubini A., Raimundo F.V., Faulhaber G.A.M., Leite C., Fischer L.M., Furlanetto T.W. Vitamin B12 in metformin-treated diabetic patients: A cross-sectional study in Brazil. Rev. Assoc. Médica Bras. 2011;57:46–49. doi: 10.1016/S0104-4230(11)70015-X.
  • Damião C.P., Rodrigues A.O., Pinheiro M.F.M.C., da Cruz R.A., Cardoso G.P., Taboada G.F., Lima G.A. Prevalence of vitamin B12 deficiency in type 2 diabetic patients using metformin: A cross-sectional study. Sao Paulo Med. J. 2016;134:473–479. doi: 10.1590/1516-3180.2015.01382111.
  • Ko S.-H., Ko S.-H., Ahn Y.-B., Song K.-H., Han K.-D., Park Y.-M., Ko S.-H., Kim H.-S. Association of vitamin B12 deficiency and metformin use in patients with type 2 diabetes. J. Korean Med. Sci. 2014;29:965–972. doi: 10.3346/jkms.2014.29.7.965.
  • De Groot-Kamphuis D.M., van Dijk P.R., Groenier K.H., Houweling S.T., Bilo H.J.G., Kleefstra N. Vitamin B12 deficiency and the lack of its consequences in type 2 diabetes patients using metformin. Neth. J. Med. 2013;71:386–390.
  • Ting R.Z.-W., Szeto C.C., Chan M.H.-M., Ma K.K., Chow K.M. Risk factors of vitamin B(12) deficiency in patients receiving metformin. Arch. Intern. Med. 2006;166:1975–1979. doi: 10.1001/archinte.166.18.1975.
  • Pflipsen M.C., Oh R.C., Saguil A., Seehusen D.A., Seaquist D., Topolski R. The prevalence of vitamin B(12) deficiency in patients with type 2 diabetes: A cross-sectional study. J. Am. Board Fam. Med. 2009;22:528–534. doi: 10.3122/jabfm.2009.05.090044.
  • Liu Q., Li S., Quan H., Li J. Vitamin B12 Status in Metformin Treated Patients: Systematic Review. PLoS ONE. 2014;9:e100379. doi: 10.1371/journal.pone.0100379.
  • Zhang Q., Li S., Li L., Li Q., Ren K., Sun X., Li J. Metformin Treatment and Homocysteine: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients. 2016;8:798. doi: 10.3390/nu8120798.
  • Callaghan T.S., Hadden D.R., Tomkin G.H. Megaloblastic anaemia due to vitamin B12 malabsorption associated with long-term metformin treatment. Br. Med. J. 1980;280:1214–1215. doi: 10.1136/bmj.280.6225.1214.
  • Bauman W.A., Shaw S., Jayatilleke E., Spungen A.M., Herbert V. Increased intake of calcium reverses vitamin B12 malabsorption induced by metformin. Diabetes Care. 2000;23:1227–1231. doi: 10.2337/diacare.23.9.1227.
  • Habib Z.A., Havstad S.L., Wells K., Divine G., Pladevall M., Williams L.K. Thiazolidinedione use and the longitudinal risk of fractures in patients with type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 2010;95:592–600. doi: 10.1210/jc.2009-1385.
  • Solomon D.H., Cadarette S.M., Choudhry N.K., Canning C., Levin R., Stürmer T. A cohort study of thiazolidinediones and fractures in older adults with diabetes. J. Clin. Endocrinol. Metab. 2009;94:2792–2798. doi: 10.1210/jc.2008-2157.
  • Schwartz A.V., Chen H., Ambrosius W.T., Sood A., Josse R.G., Bonds D.E., Schnall A.M., Vittinghoff E., Bauer D.C., Banerji M.A., et al. Effects of TZD Use and Discontinuation on Fracture Rates in ACCORD Bone Study. J. Clin. Endocrinol. Metab. 2015;100:4059–4066. doi: 10.1210/jc.2015-1215.
  • Billington E.O., Grey A., Bolland M.J. The effect of thiazolidinediones on bone mineral density and bone turnover: Systematic review and meta-analysis. Diabetologia. 2015;58:2238–2246. doi: 10.1007/s00125-015-3660-2.
  • Loke Y.K., Singh S., Furberg C.D. Long-term use of thiazolidinediones and fractures in type 2 diabetes: A meta-analysis. CMAJ Can. Med. Assoc. J. 2009;180:32–39. doi: 10.1503/cmaj.080486.

Stomach Acid Reduction

  • Valuck R.J., Ruscin J.M. A case-control study on adverse effects: H2 blocker or proton pump inhibitor use and risk of vitamin B12 deficiency in older adults. J. Clin. Epidemiol. 2004;57:422–428. doi: 10.1016/j.jclinepi.2003.08.015.
  • Dharmarajan T.S., Kanagala M.R., Murakonda P., Lebelt A.S., Norkus E.P. Do acid-lowering agents affect vitamin B12 status in older adults? J. Am. Med. Dir. Assoc. 2008;9:162–167. doi: 10.1016/j.jamda.2007.10.004.
  • Schenk B.E., Kuipers E.J., Klinkenberg-Knol E.C., Bloemena E.C., Sandell M., Nelis G.F., Snel P., Festen H.P., Meuwissen S.G. Atrophic gastritis during long-term omeprazole therapy affects serum vitamin B12 levels. Aliment. Pharmacol. Ther. 1999;13:1343–1346. doi: 10.1046/j.1365-2036.1999.00616.x.
  • Schenk B.E., Festen H.P., Kuipers E.J., Klinkenberg-Knol E.C., Meuwissen S.G. Effect of short- and long-term treatment with omeprazole on the absorption and serum levels of cobalamin. Aliment. Pharmacol. Ther. 1996;10:541–545. doi: 10.1046/j.1365-2036.1996.27169000.x.
  • Saltzman J.R., Kemp J.A., Golner B.B., Pedrosa M.C., Dallal G.E., Russell R.M. Effect of hypochlorhydria due to omeprazole treatment or atrophic gastritis on protein-bound vitamin B12 absorption. J. Am. Coll. Nutr. 1994;13:584–591. doi: 10.1080/07315724.1994.10718452.
  • Labenz J., Tillenburg B., Peitz U., Idstrom J.P., Verdu E.F., Stolte M., Borsch G., Blum A.L. Helicobacter pylori augments the pH-increasing effect of omeprazole in patients with duodenal ulcer. Gastroenterology. 1996;110:725–732. doi: 10.1053/gast.1996.v110.pm8608881.
  • Marcuard S.P., Albernaz L., Khazanie P.G. Omeprazole therapy causes malabsorption of cyanocobalamin (vitamin B12) Ann. Intern. Med. 1994;120:211–215. doi: 10.7326/0003-4819-120-3-199402010-00006.
  • Sagar M., Janczewska I., Ljungdahl A., Bertilsson L., Seensalu R. Effect of CYP2C19 polymorphism on serum levels of vitamin B12 in patients on long-term omeprazole treatment. Aliment. Pharmacol. Ther. 1999;13:453–458. doi: 10.1046/j.1365-2036.1999.00490.x.
  • McColl K.E.L. Effect of proton pump inhibitors on vitamins and iron. Am. J. Gastroenterol. 2009;104(Suppl. S2):S5–S9. doi: 10.1038/ajg.2009.45.
  • Mowat C., Williams C., Gillen D., Hossack M., Gilmour D., Carswell A., Wirz A., Preston T., McColl K.E. Omeprazole, Helicobacter pylori status, and alterations in the intragastric milieu facilitating bacterial N-nitrosation. Gastroenterology. 2000;119:339–347. doi: 10.1053/gast.2000.9367.
  • Woodward M., Tunstall-Pedoe H., McColl K. Helicobacter pylori infection reduces systemic availability of dietary vitamin C. Eur. J. Gastroenterol. Hepatol. 2001;13:233–237. doi: 10.1097/00042737-200103000-00003.
  • Mowat C., Carswell A., Wirz A., McColl K.E. Omeprazole and dietary nitrate independently affect levels of vitamin C and nitrite in gastric juice. Gastroenterology. 1999;116:813–822. doi: 10.1016/S0016-5085(99)70064-8.
  • Henry E.B., Carswell A., Wirz A., Fyffe V., McColl K.E.L. Proton pump inhibitors reduce the bioavailability of dietary vitamin C. Aliment. Pharmacol. Ther. 2005;22:539–545. doi: 10.1111/j.1365-2036.2005.02568.x.
  • Sharma V.R., Brannon M.A., Carloss E.A. Effect of omeprazole on oral iron replacement in patients with iron deficiency anemia. South. Med. J. 2004;97:887–889. doi: 10.1097/01.SMJ.0000110405.63179.69.
  • Kaye J.A., Jick H. Proton pump inhibitor use and risk of hip fractures in patients without major risk factors. Pharmacotherapy. 2008;28:951–959. doi: 10.1592/phco.28.8.951.
  • Corley D.A., Kubo A., Zhao W., Quesenberry C. Proton pump inhibitors and histamine-2 receptor antagonists are associated with hip fractures among at-risk patients. Gastroenterology. 2010;139:93–101. doi: 10.1053/j.gastro.2010.03.055.
  • Khalili H., Huang E.S., Jacobson B.C., Camargo C.A., Feskanich D., Chan A.T. Use of proton pump inhibitors and risk of hip fracture in relation to dietary and lifestyle factors: A prospective cohort study. BMJ. 2012;344:e372. doi: 10.1136/bmj.e372.
  • O’Connell M.B., Madden D.M., Murray A.M., Heaney R.P., Kerzner L.J. Effects of proton pump inhibitors on calcium carbonate absorption in women: A randomized crossover trial. Am. J. Med. 2005;118:778–781. doi: 10.1016/j.amjmed.2005.02.007.
  • Wright M.J., Sullivan R.R., Gaffney-Stomberg E., Caseria D.M., O’Brien K.O., Proctor D.D., Simpson C.A., Kerstetter J.E., Insogna K.L. Inhibiting gastric acid production does not affect intestinal calcium absorption in young, healthy individuals: A randomized, crossover, controlled clinical trial. J. Bone Miner. Res. 2010;25:2205–2211. doi: 10.1002/jbmr.108.
  • William J.H., Danziger J. Proton-pump inhibitor-induced hypomagnesemia: Current research and proposed mechanisms. World J. Nephrol. 2016;5:152–157. doi: 10.5527/wjn.v5.i2.152.
  • Toh J.W.T., Ong E., Wilson R. Hypomagnesaemia associated with long-term use of proton pump inhibitors. Gastroenterol. Rep. 2015;3:243–253. doi: 10.1093/gastro/gou054.
  • Cundy T., Dissanayake A. Severe hypomagnesaemia in long-term users of proton-pump inhibitors. Clin. Endocrinol. 2008;69:338–341. doi: 10.1111/j.1365-2265.2008.03194.x.


  • Coe F.L., Canterbury J.M., Firpo J.J., Reiss E. Evidence for secondary hyperparathyroidism in idiopathic hypercalciuria. J. Clin. Investig. 1973;52:134–142. doi: 10.1172/JCI107156.
  • Fujita T., Chan J.C., Bartter F.C. Effects of oral furosemide and salt loading on parathyroid function in normal subjects. Physiological basis for renal hypercalciuria. Nephron. 1984;38:109–114. doi: 10.1159/000183290.
  • Rejnmark L., Vestergaard P., Pedersen A.R., Heickendorff L., Andreasen F., Mosekilde L. Dose-effect relations of loop- and thiazide-diuretics on calcium homeostasis: A randomized, double-blinded Latin-square multiple cross-over study in postmenopausal osteopenic women. Eur. J. Clin. Investig. 2003;33:41–50. doi: 10.1046/j.1365-2362.2003.01103.x.
  • Ooms M.E., Lips P., Van Lingen A., Valkenburg H.A. Determinants of bone mineral density and risk factors for osteoporosis in healthy elderly women. J. Bone Miner. Res. 1993;8:669–675. doi: 10.1002/jbmr.5650080604.
  • Rejnmark L., Vestergaard P., Heickendorff L., Andreasen F., Mosekilde L. Effects of long-term treatment with loop diuretics on bone mineral density, calcitropic hormones and bone turnover. J. Intern. Med. 2005;257:176–184. doi: 10.1111/j.1365-2796.2004.01434.x.
  • Rejnmark L., Vestergaard P., Heickendorff L., Andreasen F., Mosekilde L. Loop diuretics increase bone turnover and decrease BMD in osteopenic postmenopausal women: Results from a randomized controlled study with bumetanide. J. Bone Miner. Res. 2006;21:163–170. doi: 10.1359/JBMR.051003.
  • Heidrich F.E., Stergachis A., Gross K.M. Diuretic drug use and the risk for hip fracture. Ann. Intern. Med. 1991;115:1–6. doi: 10.7326/0003-4819-115-1-1.
  • Rejnmark L., Vestergaard P., Mosekilde L. Fracture risk in patients treated with loop diuretics. J. Intern. Med. 2006;259:117–124. doi: 10.1111/j.1365-2796.2005.01585.x.
  • Tromp A.M., Ooms M.E., Popp-Snijders C., Roos J.C., Lips P. Predictors of fractures in elderly women. Osteoporos. Int. 2000;11:134–140. doi: 10.1007/PL00004174.
  • Brickman A.S., Massry S.G., Coburn J.W. changes in serum and urinary calcium during treatment with hydrochlorothiazide: Studies on mechanisms. J. Clin. Investig. 1972;51:945–954. doi: 10.1172/JCI106889.
  • Jones G., Nguyen T., Sambrook P.N., Eisman J.A. Thiazide diuretics and fractures: Can meta-analysis help? J. Bone Miner. Res. 1995;10:106–111. doi: 10.1002/jbmr.5650100115.
  • Aung K., Htay T. Thiazide diuretics and the risk of hip fracture. Cochrane Database Syst. Rev. 2011:CD005185. doi: 10.1002/14651858.CD005185.pub2.
  • Wermers R.A., Kearns A.E., Jenkins G.D., Melton L.J. Incidence and clinical spectrum of thiazide-associated hypercalcemia. Am. J. Med. 2007;120:911.e9–15. doi: 10.1016/j.amjmed.2006.07.044.
  • Chandler P.D., Scott J.B., Drake B.F., Ng K., Forman J.P., Chan A.T., Bennett G.G., Hollis B.W., Giovannucci E.L., Emmons K.M., et al. Risk of hypercalcemia in blacks taking hydrochlorothiazide and vitamin D. Am. J. Med. 2014;127:772–778. doi: 10.1016/j.amjmed.2014.02.044.
  • Parfitt A.M. The interactions of thiazide diuretics with parathyroid hormone and vitamin D. J. Clin. Investig. 1972;51:1879–1888. doi: 10.1172/JCI106990.
  • Sica D.A. Diuretic-related side effects: Development and treatment. J. Clin. Hypertens. 2004;6:532–540. doi: 10.1111/j.1524-6175.2004.03789.x.
  • Makam A.N., Boscardin W.J., Miao Y., Steinman M.A. Risk of thiazide-induced metabolic adverse events in older adults. J. Am. Geriatr. Soc. 2014;62:1039–1045. doi: 10.1111/jgs.12839.
  • Petri M., Cumber P., Grimes L., Treby D., Bryant R., Rawlins D., Ising H. The metabolic effects of thiazide therapy in the elderly: A population study. Age Ageing. 1986;15:151–155. doi: 10.1093/ageing/15.3.151.
  • Brady J.A., Rock C.L., Horneffer M.R. Thiamin status, diuretic medications, and the management of congestive heart failure. J. Am. Diet. Assoc. 1995;95:541–544. doi: 10.1016/S0002-8223(95)00148-4.
  • Zenuk C., Healey J., Donnelly J., Vaillancourt R., Almalki Y., Smith S. Thiamine deficiency in congestive heart failure patients receiving long term furosemide therapy. Can. J. Clin. Pharmacol. 2003;10:184–188.
  • Seligmann H., Halkin H., Rauchfleisch S., Kaufmann N., Tal R., Motro M., Vered Z., Ezra D. Thiamine deficiency in patients with congestive heart failure receiving long-term furosemide therapy: A pilot study. Am. J. Med. 1991;91:151–155. doi: 10.1016/0002-9343(91)90007-K.
  • Suter P.M., Haller J., Hany A., Vetter W. Diuretic use: A risk for subclinical thiamine deficiency in elderly patients. J. Nutr. Health Aging. 2000;4:69–71.
  • McCabe-Sellers B.J., Sharkey J.R., Browne B.A. Diuretic medication therapy use and low thiamin intake in homebound older adults. J. Nutr. Elder. 2005;24:57–71. doi: 10.1300/J052v24n04_06.
  • Reyes A.J., Leary W.P., Lockett C.J., Alcocer L. Diuretics and zinc. S. Afr. Med. J. 1982;62:373–375.
  • Reyes A.J., Olhaberry J.V., Leary W.P., Lockett C.J., van der Byl K. Urinary zinc excretion, diuretics, zinc deficiency and some side-effects of diuretics. S. Afr. Med. J. 1983;64:936–941.
  • Wester P.O. Urinary zinc excretion during treatment with different diuretics. Acta Med. Scand. 1980;208:209–212. doi: 10.1111/j.0954-6820.1980.tb01179.x.
  • Golik A., Modai D., Weissgarten J., Cohen N., Averbukh Z., Sigler E., Zaidenstein R., Shaked U. Hydrochlorothiazide-amiloride causes excessive urinary zinc excretion. Clin. Pharmacol. Ther. 1987;42:42–44. doi: 10.1038/clpt.1987.105.
  • Khedun S.M., Naicker T., Maharaj B. Zinc, hydrochlorothiazide and sexual dysfunction. Cent. Afr. J. Med. 1995;41:312–315.
  • Wester P.O. Tissue zinc at autopsy--relation to medication with diuretics. Acta Med. Scand. 1980;208:269–271. doi: 10.1111/j.0954-6820.1980.tb01192.x.
  • Cohen N., Golik A. Zinc balance and medications commonly used in the management of heart failure. Heart Fail. Rev. 2006;11:19–24. doi: 10.1007/s10741-006-9189-1.
  • Dørup I., Skajaa K., Clausen T., Kjeldsen K. Reduced concentrations of potassium, magnesium, and sodium-potassium pumps in human skeletal muscle during treatment with diuretics. Br. Med. J. Clin. Res. Ed. 1988;296:455–458. doi: 10.1136/bmj.296.6620.455.
  • Clayton J.A., Rodgers S., Blakey J., Avery A., Hall I.P. Thiazide diuretic prescription and electrolyte abnormalities in primary care. Br. J. Clin. Pharmacol. 2006;61:87–95. doi: 10.1111/j.1365-2125.2005.02531.x.
  • Peterzan M.A., Hardy R., Chaturvedi N., Hughes A.D. Meta-analysis of dose-response relationships for hydrochlorothiazide, chlorthalidone, and bendroflumethiazide on blood pressure, serum potassium, and urate. Hypertens. Dallas Tex 1979. 2012;59:1104–1109. doi: 10.1161/HYPERTENSIONAHA.111.190637.
  • Ernst M.E., Carter B.L., Zheng S., Grimm R.H. Meta-analysis of dose-response characteristics of hydrochlorothiazide and chlorthalidone: Effects on systolic blood pressure and potassium. Am. J. Hypertens. 2010;23:440–446. doi: 10.1038/ajh.2010.1.
  • Siegel D., Hulley S.B., Black D.M., Cheitlin M.D., Sebastian A., Seeley D.G., Hearst N., Fine R. Diuretics, serum and intracellular electrolyte levels, and ventricular arrhythmias in hypertensive men. JAMA. 1992;267:1083–1089. doi: 10.1001/jama.1992.03480080053026.
  • Lieberman F.L., Bateman J.R. Megaloblastic anemia possibly induced by triamterene in patients with alcoholic cirrhosis. Two case reports. Ann. Intern. Med. 1968;68:168–173. doi: 10.7326/0003-4819-68-1-168.
  • Mason J.B., Zimmerman J., Otradovec C.L., Selhub J., Rosenberg I.H. Chronic diuretic therapy with moderate doses of triamterene is not associated with folate deficiency. J. Lab. Clin. Med. 1991;117:365–369.
  • O’Connor D.T., Strause L., Saltman P., Parmer R.J., Cervenka J. Serum zinc is unaffected by effective captopril treatment of hypertension. J. Clin. Hypertens. 1987;3:405–408.
  • Trasobares E., Corbatón A., González-Estecha M., Lopez-Colón J.L., Prats P., Olivan P., Sánchez J.A., Arroyo M. Effects of angiotensin-converting enzyme inhibitors (ACE i) on zinc metabolism in patients with heart failure. J. Trace Elem. Med. Biol. 2007;21(Suppl. S1):53–55. doi: 10.1016/j.jtemb.2007.09.018.
  • Smit A.J., Hoorntje S.J., Donker A.J.M. Zinc Deficiency during Captopril Treatment. Nephron. 1983;34:195–197. doi: 10.1159/000183009.
  • Golik A., Modai D., Averbukh Z., Sheffy M., Shamis A., Cohen N., Shaked U., Dolev E. Zinc metabolism in patients treated with captopril versus enalapril. Metabolism. 1990;39:665–667. doi: 10.1016/0026-0495(90)90098-W.
  • Golik A., Zaidenstein R., Dishi V., Blatt A., Cohen N., Cotter G., Berman S., Weissgarten J. Effects of captopril and enalapril on zinc metabolism in hypertensive patients. J. Am. Coll. Nutr. 1998;17:75–78. doi: 10.1080/07315724.1998.10720459.
  • Peczkowska M. Influence of angiotensin I converting enzyme inhibitors on selected parameters of zinc metabolism. Pol. Arch. Med. Wewn. 1996;96:32–38.
  • Prasad A.S., Fitzgerald J.T., Hess J.W., Kaplan J., Pelen F., Dardenne M. Zinc deficiency in elderly patients. Nutrition. 1993;9:218–224.
  • Abu-Hamdan D.K., Desai H., Sondheimer J., Felicetta J., Mahajan S., McDonald F. Taste acuity and zinc metabolism in captopril-treated hypertensive male patients. Am. J. Hypertens. 1988;1:303S–308S. doi: 10.1093/ajh/1.3.303S.
  • Zumkley H., Bertram H.P., Vetter H., Zidek W., Losse H. Zinc metabolism during captopril treatment. Horm. Metab. Res. 1985;17:256–258. doi: 10.1055/s-2007-1013508.
  • Good C.B., McDermott L., McCloskey B. Diet and serum potassium in patients on ACE inhibitors. JAMA. 1995;274:538. doi: 10.1001/jama.1995.03530070036024.
  • Stoltz M.L., Andrews C.E. Severe Hyperkalemia during Very-Low-Calorie Diets and Angiotensin Converting Enzyme Use. JAMA. 1990;264:2737–2738. doi: 10.1001/jama.1990.03450210033017.
  • Burnakis T.G. Captopril and Increased Serum Potassium Levels. JAMA. 1984;252:1682–1683. doi: 10.1001/jama.1984.03350130014013.
  • Ahuja T.S., Freeman D., Mahnken J.D., Agraharkar M., Siddiqui M., Memon A. Predictors of the development of hyperkalemia in patients using angiotensin-converting enzyme inhibitors. Am. J. Nephrol. 2000;20:268–272. doi: 10.1159/000013599.
  • Kostis J.B., Shelton B., Gosselin G., Goulet C., Hood W.B., Kohn R.M., Kubo S.H., Schron E., Weiss M.B., Willis P.W., et al. Adverse effects of enalapril in the Studies of Left Ventricular Dysfunction (SOLVD). SOLVD Investigators. Am. Heart J. 1996;131:350–355. doi: 10.1016/S0002-8703(96)90365-8.
  • Burnakis T.G., Mioduch H.J. Combined therapy with captopril and potassium supplementation. A potential for hyperkalemia. Arch. Intern. Med. 1984;144:2371–2372. doi: 10.1001/archinte.1984.00350220091020.
  • Brown R.S., Sein P., Corio R., Bottomley W.K. Nitrendipine-induced gingival hyperplasia. First case report. Oral Surg. Oral Med. Oral Pathol. 1990;70:593–596. doi: 10.1016/0030-4220(90)90406-I.
  • Carty O., Walsh E., Abdelsalem A., MaCarthy D. Case report: Drug-induced gingival overgrowth associated with the use of a calcium channel blocker (amlodipine) J. Ir. Dent. Assoc. 2015;61:248–251.
  • Joshi S., Bansal S. A Rare Case Report of Amlodipine-Induced Gingival Enlargement and Review of Its Pathogenesis. Case Rep. Dent. 2013;2013:e138248. doi: 10.1155/2013/138248.
  • Lawrence D.B., Weart C.W., Laro J.J., Neville B.W. Calcium channel blocker-induced gingival hyperplasia: Case report and review of this iatrogenic disease. J. Fam. Pract. 1994;39:483–488.
  • Madi M., Shetty S., Babu S., Achalli S. Amlodipine-induced Gingival Hyperplasia—A Case Report and Review. West Indian Med. J. 2015;64:279–282. doi: 10.7727/wimj.2014.089.
  • Livada R., Shiloah J. Calcium channel blocker-induced gingival enlargement. J. Hum. Hypertens. 2014;28:10–14. doi: 10.1038/jhh.2013.47.
  • Miller C., Damm D. Incidence of verapamil-induced gingival hyperplasia in a dental population. J. Periodontol. 1992;63:453–456. doi: 10.1902/jop.1992.63.5.453.
  • Sanz M. Current use of calcium channel blockers (CCBs) is associated with an increased risk of gingival hyperplasia. J. Evid.-Based Dent. Pract. 2012;12:147–148. doi: 10.1016/j.jebdp.2011.03.009.
  • Anand V., Nair S. An unusual toxicity with beta blocker and calcium channel blocker. Indian J. Crit. Care Med. 2015;19:496–498. doi: 10.4103/0972-5229.162475.
  • Hoyt R.E. Hyperkalemia due to Salt Substitutes. JAMA. 1986;256:1726. doi: 10.1001/jama.1986.03380130054021.
  • Nishida Y., Takahashi Y., Nakayama T., Asai S. Comparative effect of angiotensin II type I receptor blockers and calcium channel blockers on laboratory parameters in hypertensive patients with type 2 diabetes. Cardiovasc. Diabetol. 2012;11:53. doi: 10.1186/1475-2840-11-53.
  • Nishida Y., Takahashi Y., Tezuka K., Takeuchi S., Nakayama T., Asai S. A Comparative Effectiveness Study of Renal Parameters between Imidapril and Amlodipine in Patients with Hypertension: A Retrospective Cohort Study. Cardiol. Ther. 2017 doi: 10.1007/s40119-016-0080-4.


We have more prescription support formulas in the works for antidepressants, pain relievers, antibiotics, and more.